Dr. Themis Lazaridis

My research is in the area of Theoretical and Computational Biophysical Chemistry, which aims to understand how biological systems work in terms of the fundamental laws of Physics and Chemistry. Biomolecules, such as proteins and nucleic acids, have well defined conformations which often change in the course of their function. Our goal is to understand the forces that operate within and between biomolecules and develop quantitative mathematical models for their energy as a function of conformation. Such models are useful in many ways, such as predicting the three-dimensional structure from sequence, characterizing conformational changes involved in biological function, or predicting the binding affinity between two biomolecules.

One of the most difficult interactions to model is that between biomolecules and solvent. What is needed is a simple analytical function that gives the solvation free energy for an arbitrary conformation. Several years ago we developed a model (EEF1) based on the idea that solute atoms exclude solvent from the region they occupy. More recently we extended this model to biological membranes, which are essentially a heterogeneous solvent. This will allow us to study the folding and stability of membrane proteins, a class of proteins of extraordinary importance whose structure and mechanism of action largely remain elusive to this date. It will also allow us to study the interaction of peptides and soluble proteins with membranes, which is implicated in many biological processes such as membrane fusion, innate immunity, or signal transduction.




Dr. Themis Lazaridis
Professor, Department of Chemistry
City College of New York
Convent Avenue at 138th St.
New York, NY 10031
tel. (212) 650-8364
fax. (212) 650-6107
Office: MR-1338, Lab: MR-1325
Lazaridis Group Home Page